Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans.
نویسندگان
چکیده
Salicylic acid (SA) is a phenolic metabolite produced by plants and is known to play an important role in several physiological processes, such as the induction of plant defense responses against pathogen attack. Here, using the Arabidopsis thaliana-Pseudomonas aeruginosa pathosystem, we provide evidence that SA acts directly on the pathogen, down regulating fitness and virulence factor production of the bacteria. Pseudomonas aeruginosa PA14 showed reduced attachment and biofilm formation on the roots of the Arabidopsis mutants lox2 and cpr5-2, which produce elevated amounts of SA, as well as on wild-type Arabidopsis plants primed with exogenous SA, a treatment known to enhance endogenous SA concentration. Salicylic acid at a concentration that did not inhibit PA14 growth was sufficient to significantly affect the ability of the bacteria to attach and form biofilm communities on abiotic surfaces. Furthermore, SA down regulated three known virulence factors of PA14: pyocyanin, protease, and elastase. Interestingly, P. aeruginosa produced more pyocyanin when infiltrated into leaves of the Arabidopsis transgenic line NahG, which accumulates less SA than wild-type plants. This finding suggests that endogenous SA plays a role in down regulating the synthesis and secretion of pyocyanin in vivo. To further test if SA directly affects the virulence of P. aeruginosa, we used the Caenorhabditis elegans-P. aeruginosa infection model. The addition of SA to P. aeruginosa lawns significantly diminished the bacterium's ability to kill the worms, without affecting the accumulation of bacteria inside the nematodes' guts, suggesting that SA negatively affects factors that influence the virulence of P. aeruginosa. We employed microarray technology to identify SA target genes. These analyses showed that SA treatment affected expression of 331 genes. It selectively repressed transcription of exoproteins and other virulence factors, while it had no effect on expression of housekeeping genes. Our results indicate that in addition to its role as a signal molecule in plant defense responses, SA works as an anti-infective compound by affecting the physiology of P. aeruginosa and ultimately attenuating its virulence.
منابع مشابه
Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors.
We reported recently that the human opportunistic pathogen Pseudomonas aeruginosa strain PA14 kills Caenorhabditis elegans and that many P. aeruginosa virulence factors (genes) required for maximum virulence in mouse pathogenicity are also required for maximum killing of C. elegans. Here we report that among eight P. aeruginosa PA14 TnphoA mutants isolated that exhibited reduced killing of C. e...
متن کاملDifferential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice.
We cloned the rpoN (ntrA, glnF) gene encoding the alternate sigma factor sigma(54) from the opportunistic multihost pathogen Pseudomonas aeruginosa strain PA14. A marker exchange protocol was used to construct the PA14 rpoN insertional mutation rpoN::Gen(r). PA14 rpoN::Gen(r) synthesized reduced levels of pyocyanin and displayed a variety of phenotypes typical of rpoN mutants, including a lack ...
متن کاملMolecular Mechanisms of Bacterial Virulence Elucidated Using a Pseudomonas aeruginosa– Caenorhabditis elegans Pathogenesis Model
The human opportunistic pathogen Pseudomonas aeruginosa strain PA14 kills Caenorhabditis elegans. Using systematic mutagenesis of PA14 to identify mutants that fail to kill C. elegans and a C. elegans mutant that lacks P-glycoproteins, we identified phenazines, secreted P. aeruginosa pigments, as one of the mediators of killing. Analysis of C. elegans mutants with altered responses to oxidative...
متن کاملLow concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds
Objective(s): Honey’s ability to kill microorganisms and even eradication of chronic infections with drug-resistant pathogens has been documented by numerous studies. The present study is focused on the action of honey in its sub-inhibitory levels to impact on the pathogens coordinated behaviors rather than killing them. Materials and Methods:</strong...
متن کاملThe Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana.
SUMMARY Successful pathogen infection likely involves the suppression of general antimicrobial host defences. One Pseudomonas syringae virulence factor proposed to act in this manner is coronatine (COR), a phytotoxin believed to function as an analogue of one or more jasmonates, a family of plant growth regulators. COR biosynthetic (COR(-)) mutants of P. syringae pv. tomato strain DC3000 exhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 73 9 شماره
صفحات -
تاریخ انتشار 2005